本课程讲授预测分析的基础知识。参与者将学习如何使用数据分析方法(包括统计、建模和机器学习)来分析在历史数据中发现的模式。分析历史数据将帮助您获得更深入的见解、识别潜在风险、寻求改进机会并预测未来情况。通过实际示例和练习介绍分析原理。
本课程面向的受众是组织中希望利用预测分析能力解决问题的个人。本课程深受以下受众的欢迎:业务分析人员和问题解决团队的成员,领导和推进卓越运营活动的人员,进行市场营销分析的人员以及准备在组织内实施预测分析的从业者。
培训课程
- 分析基础知识
- 回归建模与预测
- 机器学习
- 高级机器学习
- 研讨会
第 1 天
在此基础课程中,您将学习如何通过使用 Minitab 导入数据以尽可能缩短分析数据所需的时间,如何开发可靠的统计方法来探索数据,如何创建和解释有吸引力的可视化表现形式并导出结果。实现 Minitab 分析自动化,只需很少的用户输入,可以节省不少时间。分析来自实际应用的各种数据集,学习如何为自己的应用选择正确的分析工具,并解释统计输出。学习重要统计概念(如假设检验和置信区间)的基础知识。
本课程重点讲授如何基于业务、制造和事务过程中常用统计方法的实际应用做出可靠的决策。
包括以下主题:
- 导入数据和设置数据格式
- Exec 宏
- 条形图
- 直方图
- 箱线图
- Pareto 图
- 散点图
- 位置和变异测量
- t 检验
- 等方差检验
- 功效和样本数量
前备课程: 无

