介绍视频
SALFORD PREDICTIVE MODELER

基于树的机器学习简介
第 1 部分:回归(定量目标)
学习 Minitab 数据挖掘软件的基础知识。


CART 回归决策树简介 ›
25:40


如何以方程形式编写决策树 (CART®) ›
11:26


如何在决策树 (CART®) 中对变量交互作用进行建模? ›
8:45


用于回归的 Random Forests 简介 ›
14:59


用于回归的随机梯度推进简介 ›
建议:在观看本视频之前,请先观看“CART® 回归决策树简介”
39:49


MARS 非线性回归样条简介 ›
建议:在观看本视频之前,请先观看“CART® 回归决策树简介”
1:21:50
基于树的机器学习简介
第 2 部分:分类(类别目标)


用于分类的 CART 决策树简介 ›
32:24


用于分类的 Random Forests 简介 ›
建议:在观看本视频之前,请先观看“用于分类的 CART 决策树简介”
20:57


用于分类的随机梯度推进简介 ›
建议:在观看本视频之前,请先观看“用于分类的 CART 决策树简介”
37:07
其他介绍视频


数据挖掘简介 ›
1:02:22


梯度推进 (TreeNet®) 简介 ›
11:26


非线性回归 (MARS®) 简介 ›
53:43


Random Forests® 简介 ›
9:41


CART® 决策树简介 ›
1:00:06
我们的工作
Minitab 产品通过智能数据分析
帮助企业提高效率并改进质量。
Salford Predictive Modeler® 8
Minitab 的机器学习软件集成套件

CART®
SPM 的 CART® 建模引擎是绝佳的分类树,为高级分析领域带来创新,开启了崭新的数据科学时代。

Random Forests®
Random Forests® 是一个建模引擎,充分利用了多个备选分析、随机化策略和集成学习的功效。

MARS®
MARS® 建模引擎最适合那些希望采用与传统回归类似的形式输出结果并同时希望捕获基本的非线性交互数据的用户。

TreeNet®
TreeNet® 梯度推进是 SPM 中一款最灵活、最强大的数据挖掘工具,能够按照统一的方式生成非常准确的模型。

定价
有关定价信息,请联系我们。

大学计划
我们的大学计划旨在以显著降低的许可费用向教育社区提供 SPM®、CART®、MARS®、TreeNet® 和 Random Forests® 建模引擎。

自动化
预打包了 70 多种方案,这些基本上都是受领先模型分析人员构造他们的建模作品的启发而得到的试验方案。